3D Objects

Box geometry

To define a geometry for a box, you split up the cube into triangles and provide the coordinates of these triangles in the GL buffer. First, I defined all 8 vertices that are used for the box geometry.

Then, I defined the vertices by providing the vertex indices which I then mapped to the vertex data.

/**
* Create a box with the sizes a * b * c,
* centered at (0, 0, 0), 2 triangles per side.
*
* @name box
* @param {number} sizeA
* @param {number} sizeB
* @param {number} sizeC
*/
export function box(sizeA = 1.0, sizeB = 1.0, sizeC = 1.0) {
const a = sizeA * 0.5;
const b = sizeB * 0.5;
const c = sizeC * 0.5;
const vertices = [
[-a, -b, -c],
[a, -b, -c],
[-a, b, -c],
[a, b, -c],
[-a, -b, c],
[a, -b, c],
[-a, b, c],
[a, b, c],
];
//     0______1
//   4/|____5/|
//   |2|____|_|3
//   |/ ____|/
//  6       7

const faces = [
// back
[0, 1, 2],
[2, 1, 3],
// front
[5, 4, 7],
[7, 4, 6],
// left
[4, 0, 6],
[6, 0, 2],
// right
[7, 5, 1],
[1, 7, 3],
// top
[1, 0, 5],
[5, 0, 4],
// bottom
[2, 3, 6],
[6, 3, 7],
];
const result = faces
.flat()
.map((vertexIndex) => vertices[vertexIndex])
.flat();
return result;
}

Demo

The abouve demo is written in modular JavaScript without bundling/transpiling toolchain, so you can check the sources via the browser dev tools. The box geometry is provided in the geometry.mjs. The motion of the cube is handled in the shader code via translation and rotation matrices, see the shaders.mjs for details.

I provided the box geometry in the position buffer. To provide different colors for each side of the box, I provided colors for each vertex in a color buffer. Each side consists of 2 triangles, made up from 2*3=6 vertices.

const glea = new GLea({
buffers: {
position: GLea.buffer(3, cube(0.25)),
color: GLea.buffer(
3, // use vec3 data type
[
...Array(6).fill(red),
...Array(6).fill(green),
...Array(6).fill(blue),
...Array(6).fill(pink),
...Array(6).fill(cyan),
...Array(6).fill(yellow),
].flat()
),
},
}).create();

I used an early prototype of the GLea library here. The implementation of the box geometry landed into an npm package ella-math I've published recently.

Sphere geometry

Creating a sphere geometry from triangles basically works similar to the box geometry, but

• it contains much more vertices
• the calculation of the vertex positions are not as straightforward as with the box geometry.

Calculating vertex positions

You can calculate the vertex position by providing a radius and two angles:

const evalPos = (radius, theta, phi) => {
const deg = Math.PI / 180.0;
var pos = new Vec(
radius * Math.sin(theta * deg) * Math.sin(phi * deg),
radius * Math.sin(theta * deg) * Math.cos(phi * deg)
);
return pos;
};

To get all vertexes for the sphere geometry, you specify:

• the number of sides around sphere
• the number of segments from top to bottom of the spere.